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Measurement of Small Dielectric Losses in Material

with a Large Dielectric Constant

at Microwave Frequencies*

R. O. BELL~ AND

&rnmarfj-A method is described for measuring dielectric losses
at microwave frequencies in materials with a large dielectric con-

stant. By observing a dielectric resonance in a sufficiently large sam-
ple, the loss tangent of the material can be obtained. Results on
SrTiO, single crystals at 20 kMc are presented.

INTRODUCTION

ACCURATE measurement of small dielectric

losses in a material with a large dielectric con-

stant is difficult at microwave frequencies. If a

cavity perturbation methodl is used, it is hard to strike

a balance in sample size so that the frequency shift of

the cavity caused by the large dielectric constant is not

too large, while the losses are large enough to be readily

measurable. For a metallic cavity filled with the dielec-

tric material, the skin losses may obscure the dielectric

losses. Coaxial measurements are not free from skin

losses and it also becomes more and more difficult with

increasing frequency to avoid losses associated with the

generation of higher-order modes. z An appreciable re-

duction of skin losses has been achieved with a dielec-

tric cavity proposed by Hakki and Coleman,3 but here

the coupling to the cavity, the identification of the

modes, and the mechanical requirements complicate the

use of this method.

We propose a method which uses a sample large

enough to support a dielectric resonance. The shape of

the sample is not critical for the measurement of the

microwave losses, and the physical size can be small

compared to the dimensions of the waveguide in which

it is suspended. Thus the dielectric sample, which is the

resonant structure, is entirely surrounded by the excit-

ing electromagnetic wave. It will be shown that the ob-

served losses represent the Q of the dielectric material
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itself. This method has been applied successfully to

lmeasure the loss tangent of SrTi03 between 3 kMc and

37 khlc in a temperature range from – 180”C to 250”C.

THEORY

Strontium titanate has a relative dielectric constant

of about 300 at room temperature and 1500 at – 180°C.

This large dielectric constant presents an appreciable

discontinuity for the propagation of electromagnetic

waves. Since the characteristic feature of a resonant

structure is the existence of discontinuities, an almost

arbitrary piece of SrTiOs can be used 21S a resonant

structure provided that at least two dimensions are

greater than ~0/ ~=. This makes it possible to work with

small samples. A SrTiO ? sample at room temperature

with dimensions the order of one millimeter is large

enough to resonate at 20 kMc, since the wavelength in

the sample is only about 0.9 mm.

In this section of the paper the problem of dielectric

resonances in general will be considered; in the Ap-

pendix the theory for the particular case of a spherically

shaped dielectric resonator will be developed in more

detail, and it will be shown that the approximations

made here are valid for a sphere in particular.

Let LIS consider a finite piece of material with a rela-

tive dielectric constant ~ and loss tangent tan ~ in free

space. For a dielectric resonance QO will be definecl as

27 x stored energy u U
Q. = —— —7 (1)

energy loss per cycle TV

where the first integral is taken over the electric field

inside the dielectric sample and the second integral

over the electric field associated with the dielectric

resonance outside the sample, u is the characteristic fre-

quency of the dielectric resonance.

The dielectric loss will be given by

(3)

where the integral is taken over the electric field inside

the dielectric sample. With c>>l and a rapidly decaying

electromagnetic field outside the sample, the second

term of the stored energy, U, becomes negligible com-

pared to the energy stored inside the sample. ‘With these



240

approximations,

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES May

(4)

In practice the sample is placed inside a waveguide;

therefore, skin losses can also contribute to losses of the

dielectric resonance, but because of the rapid decay of

the electromagnetic fields outside the sample, this source

of loss may be neglected.

It is possible to measure the cavity Q by the usual

frequency variation methods,4 but because of the special

problems encountered with SrTiO~, a different method

was developed. SrTiO~ is a paraelectric whose dielectric

constant obeys a Curie-Weiss law.

(5)

where C = 8.5X 104 is the Curie constant and

T.= – 240”C is the Curie temperature. For a lossless

resonant structure the frequency varies inversely with

the square root of the dielectric constant, so that for

uO>>AU ,

AU 1 AT
.

@o 7T– T.’

where AT is the width of a resonant peak in the tem-

perature scale. The loaded Q, QL, is related to the un-

loaded Q, by the coupling constant ~:

Qo = (1 + /3)QL.

Therefore,

1 AT
tan 8 = — ——–-

2 (T– T.)(1 +@i”
(6)

MEASUREMENT

Fig. 1 shows the experimental set up used to measure

the losses of SrTi03 at 20 kMc. At this frequency the

samples were either rough cubes or spheres with dimen-

sions the order of one millimeter. The sample was sup-

ported on a piece of polyfoam for measurements below

room temperature and on fiberglass for measurements

above room temperature (Fig. 2). Even though the

sample was partially surrounded by polyfoam or fiber

glass, convection heating kept the sample close to the

temperature of the waveguide. The temperature of a

resonance as measured by the thermocouple with

slowly increasing and with slowly decreasing tempera-

ture, varied by less than two degrees. The sample tem-

perature differs, therefore, at most by one degree from

the thermocouple reading. From (6) this will contribute

about 2 per cent to the error at — 200°C and much less

at higher temperatures.

4 E. L. Ginzton, “h’ficrowave lh’measurements, ” McGraw.Hill
Book Co., Inc., New York, N. Y.; 1957.
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Fig. l—Block diagram for measurement of the loss tangent at K band.
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Fig. 2—Sample holder.

The sample and attenuator (which was set at 15- to

20-db attenuation to appear as a load) were placed in

one arm of a hybrid tee, and a line tuner and a load

were placed in the opposite arm. The line tuner was

adjusted to cancel any reflections from the sample

arm when the sample was not resonant. For measure-

ments below room temperature the section of waveguide

with the sample was cooled to liquid nitrogen tempera-

ture and then allowed to warm slowly. Above room

temperature a coil heater was used to heat the sample.

A thermocouple was soldered to the waveguide wall

next to the sample and used to drive the x axis of an

x-y chart recorder. The relative signal at detector 1

(Fig. 1) was plotted as a function of temperature on

the chart recorder. From this plot of reflection vs tem-

perature, AT and T were obtained. By observing the

power received at detector 3, the coupling coefficient

can be deternlined.5 In particular, if we assume the

sample behaves as a reaction cavity, it can be shown

that

d(l+@)= +,
m,.

where PO is the power transmitted off resonance and

P inm is the minimum power transmitted as the sample

goes through resonance.

Measurements have also been made at various fre-

quencies between 3 kMc and 37 kil[c using similar

methods.

5 C. G. lhlontgomery, “Technique of Microwave Measurements,”
h’fcGraw-HilI Book Co., Inc., New York, N. Y.; 1947.
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RESULTS~ND DISCUSSION

Measurements have been made on various rough

cubes and spheres. Fig. 3 shows measurements made on

two different samples of SrTiOa. Because of the large

variation of the dielectric constant in the temperature

range of — 180°C to 250”C, there are many temperatures

at which the samples were resonant. From these res-

onances the loss tangent can be determined as a func-

tion of temperature for a constant frequency.

When the relative orientation of the sample in the

waveguide was changed, different resonances were ex-

cited, but the same value of the loss tangent was ob-

served. The measured value of the loss tangent was also

independent of the surface finish and the size of the

sample.

The main problem encountered with the cube was that

resonances were partially superimposed. Because of the

symmetry of a cube a large number of resonances are

degenerate, but since the samples were not quite perfect

this degeneracy is lifted and some peaks are split. Care

must be taken to insure that there is only one peak.

This problem can be reduced by using a parallelepipeds

with three (3) unequal sides, or spheres.

The microwave power incident on the sample must

be kept at a low level to reduce any heating effects. The

linewidths are only about 0.2°C near liquid nitrogen

temperature. Slight heating can alter the line shape or

width. In all measurements the power was reduced

until the line shape and width were independent of the

power level.

Obviously, this or a similar method of measuring the

loss tangent can be extended to any frequency where

SrTiO~ or any other material with a large dielectric

constant can be placed inside a section of waveguide.

APPENDIX

The problem of a dielectric resonator of anything but

the simplest shape is quite complicated, Because of its

symmetry the sphere is the easiest shape to solve ex-

actly.c,’ Several other types of dielectric resonators such

as the dielectric circular ring resonator? and rectangular

resonators have also been studied. The sphere is used

here as an example to validate some of the statements

made in the section on Theory. An attempt will be made

to show principally that the energy associated with the

dielectric resonance outside the sphere can be neglected

compared to the energy stored inside the sphere, and

that the skin losses can be neglected compared to the

dielectric losses,

RichtmyerT has shown in general that energy cannot

0 P. Ilebye, “Der Lichtdruck auf Kugeln von Beliebigenl hla-
terial, ” A~~n. Ph.v.r., ser. 4, vol. 3(?, pp. 57–136; 1909.

7 R. D. Richtmyer, ‘(Dielectric resonators, ” ~. Apjl. F’h.vs., vol.
10, pp. .391–398 : June, 1939.

a N. NI. Kroll, et al., “Millimeter \17a~e Measurements, ” Co-
lumbia University. New York. N. Y.. Radiation Lab. Ouart. Red..
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Fig. 3—Loss ta,ngent vs temperature.

be confined in a finite region of space loy a dielectric

alone because energy is always lost by radiation. Under

certain conditions, though, this energy loss can be quite

small compared to the dielectric losses. The electro-

magnetic fields outside the dielectric sample initially

decay rapidly but then at large distances from the sam-

ple they oscillate. Because of the presence of this radia-

tion field, the integral over the total energy density

outside the dielectric resonator does nc)t converge. A

related problem with dielectric resonators is how much

of the energy outside the sample should be included in

the stored energy of the resonator.

Because of these problems we will consider the di-

electric resonator in a slightly different way. Experi-

mentally we know the spherical dielectric sample is not

radiating since it is surrounded by waveguide. We will

consider the problem of a dielectric sphere of radius a

and relative dielectric constant e at the center of a

spherical metal cavity of radius b > a. For estimating

the skin losses, b will be some number the order of the

waveguide dimensions. We will consicier the modes

which are little different from the modes which would

exist if the sample were in free space.

The electromagnetic fields can be expressed in terms

of the vector potential in spherical coordinates, which

inside and outside the dielectric sphere will be

[

im dPnm
Ai. = j,,(klr)ei”+ 6 — P,L” – ~ –— 1e—i”t>

sin 0 de

Ao.~ = [B.jn(kZr) + Cnnn(klr)]eirn~

[

%2
. d— 1p,,. _ & !Ec ~— i., t

sin e do “

~. and n. are spherical Bessel functions of the first and

second kind, P ~~ are the associated Legendre functions, g

s For the properties of spherical Bessel function and associated
Legendre functions, see J. A. Stratton, “Electromagnetic Theory,”
McGraw-Hill Book Co., Inc., New York, N. Y., 1941, or a similar
work.June 16 to September 15, 1959’. ‘

. .
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kl = (2r/A) ~~, kz = 27r/h, and co is the angular frequency.

B n and C% are determined by the boundary condition

that the tangential components of A and its curl must

be continuous at r = a, and that the tangential com-

ponents of A must vanish at ~ = b. A characteristic

equation is obtained which determines the resonant

frequencies of the system.

[k,ajn(k,a)]’

— —.
?t~(kzb)

n,(kaa) — — j~(k,a)
j.(kzb)

The prime indicates differentiation with respect to

the argument. The damping because of skin losses can

be computed and expressed in terms of a Qskin.10

where 8 is the skin depth (2/cOpa)l/z and IS is the con-

ductivity of the walls. We have assumed that the rela-

tive permeability of the cavity and of the dielectric

sphere is one.

The radius of the samples measured at 20 kNIc was of

the order of 5 X 10–4 meters. If we assume that

b =15X 10–4 meters, which is roughly ~ the smallest

dimension of the waveguide, we find that c = 150 and

~ = 750 for the first two roots of the characteristic equa-

10 \V. R. Smythe, “Static and Dynamic Electricity, ” hlcGraw-
Hill Book Co,, Inc., New York, N. Y., p. 531; 1950.

tion for n = 1. The characteristic equation is almost in-

dependent of b for values of a, b, and a of this order. If

we assume that the metal cavity is copper (a= 5.8 X 10–7

mhos/meter), we find ~skin = 105 and Q~ki. =5 X 105 for

~ = 150 and 750, respectively. For larger values of n,

Qskin is still larger. Since the loss tangent of the material

being measured was the order of 10–3 which corresponds

to an unloaded Q= 103, the skin losses may be neglected.

The ratio of the energy stored inside the dielectric

sphere to the energy stored outside the dielectric sphere

can be calculated. Considering roots of the characteristic

equation such that the electric field decreases outside the

dielectric sphere, it is found that for any reasonably

small value of b the energy stored inside the dielectric

sphere is much greater than the energy stored outside.

For instances for n = 1,E= 300, a = 5 X 10–4 meters, and

a frequency of 20 kNIc, we find that b must be about

0.8 meter before the energy stored externally equals

the energy stored inside the dielectric sphere.

If we assume that a = 5 X 10–4 meters and b =15X 10-4

meters and n = 1, then the ratio of the energy stored out-

side the dielectric sphere to the energy stored inside is

0.03 for ~= 150 and 0.007 for e= 750. For larger values

of n and larger values of the dielectric constant, the

ratio of the energies is still smaller.

Other shapes of dielectric resonators such as cubes or

parallelepipeds will behave in a similar manner in re-

gard to skin losses and the relative energy stored inside

and outside the sample; although the details will de-

pend on the specific geometry. Some of the possible uses

of dielectric resonators have been pointed out by

Okaya.11

11A. Okaya, “The rutile microwave resonator, ” PROC. IRE,
(Correspondence), vol. 48, p. 1921; November, 1960.


