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Measurement of Small Dielectric Losses in Material
with a Large Dielectric Constant
at Microwave Frequencies*

R. O. BELL{ axp G. RUPPRECHTY}

Summary——A method is described for measuring dielectric losses
at microwave frequencies in materials with a large dielectric con-
stant. By observing a dielectric resonance in a sufficiently large sam-
ple, the loss tangent of the material can be obtained. Results on
SrTiO; single crystals at 20 kMc are presented.

INTRODUCTION

CCURATE measurement of small dielectric
A losses in a material with a large dielectric con-
stant is difficult at microwave frequencies. If a
cavity perturbation method! is used, it is hard to strike
a balance in sample size so that the frequency shift of
the cavity caused by the large dielectric constant is not
too large, while the losses are large enough to be readily
measurable. For a metallic cavity filled with the dielec-
tric material, the skin losses may obscure the dielectric
losses. Coaxial measurements are not free from skin
losses and it also becomes more and more difficult with
increasing frequency to avoid losses associated with the
generation of higher-order modes.? An appreciable re-
duction of skin losses has been achieved with a dielec-
tric cavity proposed by Hakki and Coleman,? but here
the coupling to the cavity, the identification of the
modes, and the mechanical requirements complicate the
use of this method.

We propose a method which uses a sample large
enough to support a dielectric resonance. The shape of
the sample is not critical for the measurement of the
microwave losses, and the physical size can be small
compared to the dimensions of the waveguide in which
it is suspended. Thus the dielectric sample, which is the
resonant structure, is entirely surrounded by the excit-
ing electromagnetic wave. It will be shown that the ob-
served losses represent the Q of the dielectric material
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itself. This method has been applied successtully to
measure the loss tangent of SrTiO; between 3 kMc and
37 kMc in a temperature range from —180°C to 250°C,

THEORY

Strontium titanate has a relative dielectric constant
of about 300 at room temperature and 1500 at —180°C,
This large dielectric constant presents an appreciable
discontinuity for the propagation of electromagnetic
waves. Since the characteristic {eature of a resonant
structure is the existence of discontinuities, an almost
arbitrary piece of SrTiO; can be used as a resonant
structure provided that at least two dimensions are
greater than \o/+/e. This makes it possible to work with
small samples. A SrTiO; sample at room temperature
with dimensions the order of one millimeter is large
enough to resonate at 20 kMg, since the wavelength in
the sample is only about 0.9 mm.

In this section of the paper the problem of dielectric
resonances in general will be considered; in the Ap-
pendix the theory for the particular case of a spherically
shaped dielectric resonator will be developed in more
detail, and it will be shown that the approximations
made here are valid for a sphere in particular.

Let us consider a finite piece of material with a rela-
tive dielectric constant € and loss tangent tan é in free
space. For a dielectric resonance @y will be defined as

27 X stored energy = wU
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where the first integral is taken over the electric field
inside the dielectric sample and the second integral
over the electric field associated with the dielectric
resonance outside the sample, w is the characteristic fre-
quency of the dielectric resonance.

The dielectric loss will be given by

weep tan 6
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where the integral is taken over the electric field inside
the dielectric sample. With €3>1 and a rapidly decaying
electromagnetic field outside the sample, the second
term of the stored energy, U, becomes negligible com-
pared to the energy stored inside the sample. With these
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approximations,
1

tand

Qo = €

In practice the sample is placed inside a waveguide;
therefore, skin losses can also contribute to losses of the
dielectric resonance, but because of the rapid decay of
the electromagnetic fields outside the sample, this source
of loss may be neglected.

It is possible to measure the cavity Q by the usual
frequency variation methods,* but because of the special
problems encountered with SrTiO;, a different method
was developed. SrTiOj; is a paraelectric whose dielectric
constant obeys a Curie-Weiss law.

e = - (5)

where C=85X10* is the Curie constant and
T.= —240°C is the Curie temperature. For a lossless
resonant structure the frequency varies inversely with
the square root of the dielectric constant, so that for
we>Aw, ’

Aw 1

AT
w 2 T—T,

where AT is the width of a resonant peak in the tem-
perature scale. The loaded Q, Q;, is related to the un-
loaded Qp by the coupling constant f3:

Qo= (14 6)0r.
Therefore,

1 AT
tan § = — — -

T (©)
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MEASUREMENT

Fig. 1 shows the experimental set up used to measure
the losses of SrTiO; at 20 kMec. At this frequency the
samples were either rough cubes or spheres with dimen-
sions the order of one millimeter. The sample was sup-
ported on a piece of polyfoam for measurements below
room temperature and on fiberglass for measurements
above room temperature (Fig. 2). Even though the
sample was partially surrounded by polyfoam or fiber
glass, convection heating kept the sample close to the
temperature of the waveguide. The temperature of a
resonance as measured by the thermocouple with
slowly increasing and with slowly decreasing tempera-
ture, varied by less than two degrees. The sample tem-
perature differs, therefore, at most by one degree from
the thermocouple reading. From (6) this will contribute
about 2 per cent to the error at —200°C and much less
at higher temperatures.

*E. L. Ginzton, “Microwave Measurements,” NMcGraw-Hill
Book Co., Inc., New York, N. Y.; 1957.
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Fig.1—Block diagram for measurement of the loss tangent at K band.
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Fig. 2—Sample holder.

The sample and attenuator {which was set at 15- to
20-db attenuation to appear as a load) were placed in
one arm of a hybrid tee, and a line tuner and a load
were placed in the opposite arm. The line tuner was
adjusted to cancel any reflections from the sample
arm when the sample was not resonant. For measure-
ments below room temperature the section of waveguide
with the sample was cooled to liquid nitrogen tempera-
ture and then allowed to warm slowly. Above room
temperature a coil heater was used to heat the sample.
A thermocouple was soldered to the waveguide wall
next to the sample and used to drive the x axis of an
x-y chart recorder. The relative signal at detector 1
(Fig. 1) was plotted as a function of temperature on
the chart recorder. From this plot of reflection vs tem-
perature, AT and T were obtained. By observing the
power received at detector 3, the coupling coefficient
can be determined.’ In particular, if we assume the
sample behaves as a reaction cavity, it can be shown

that
1+8) = 4/_})0—
l8 B Pmin)

where P, is the power transmitted off resonance and
P is the minimum power transmitted as the sample
goes through resonance.

Measurements have also been made at various fre-
quencies between 3 kMc and 37 kMc using similar
methods.

5 C. G. Montgomery, “Technique of Microwave Measurements,”
McGraw-Hill Book Co., Inc., New York, N. Y.; 1947.
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REsULTS AND DIsScUSsION

Measurements have been made on wvarious rough
cubes and spheres. Fig. 3 shows measurements made on
two different samples of SrTiO;. Because of the large
variation of the dielectric constant in the temperature
range of —180°C to 250°C, there are many temperatures
at which the samples were resonant. From these res-
onances the loss tangent can be determined as a func-
tion of temperature for a constant frequency.

When the relative orientation of the sample in the
waveguide was changed, different resonances were ex-
cited, but the same value of the loss tangent was ob-
served. The measured value of the loss tangent was also
independent of the surface finish and the size of the
sample.

The main problem encountered with the cube was that
resonances were partially superimposed. Because of the
symmetry of a cube a large number of resonances are
degenerate, but since the samples were not quite perfect
this degeneracy is lifted and some peaks are split. Care
must be taken to insure that there is only one peak.
This problem can be reduced by using a parallelepiped
with three (3) unequal sides, or spheres.

The microwave power incident on the sample must
be kept at a low level to reduce any heating effects. The
linewidths are only about 0.2°C near liquid nitrogen
temperature. Slight heating can alter the line shape or
width. In all measurements the power was reduced
until the line shape and width were independent of the
power level.

Obviously, this or a similar method of measuring the
loss tangent can be extended to any frequency where
SrTiO; or any other material with a large dielectric
constant can be placed inside a section of waveguide.

APPENDIX

The problem of a dielectric resonator of anything but
the simplest shape is quite complicated. Because of its
symmetry the sphere is the easiest shape to solve ex-
actly.®7 Several other types of dielectric resonators such
as the dielectric circular ring resonator” and rectangular
resonators® have also been studied. The sphere is used
here as an example to validate some of the statements
made in the section on Theory. An attempt will be made
to show principally that the energy associated with the
dielectric resonance outside the sphere can be neglected
compared to the energy stored inside the sphere, and
that the skin losses can be neglected compared to the
dielectric losses.

Richtmyer” has shown in general that energy cannot

6 P. Debye, “Der Lichtdruck auf Kugeln von Beliebigem NMa-
terial,” Ann. Phys., ser. 4, vol. 30, pp. 57-136; 1909.

7 R. D. Richtmyer, “Dielectric resonators,” J. Apgl. Phys., vol.
10, pp. 391-398: June, 1939.

3 N. M. Kroll, et al., “Millimeter Wave Measurements,” Co-
lumbia University, New York, N. Y., Radiation Lab. Quart. Rept.,
June 16 to September 1§, 1959.
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Fig. 3—Loss tangent vs temperature.

be confined in a finite region of space by a dielectric
alone because energy is always lost by radiation. Under
certain conditions, though, this energy loss can be quite
small compared to the dielectric losses. The electro-
magnetic fields outside the dielectric sample initially
decay rapidly but then at large distances from the sam-
ple they oscillate. Because of the presence of this radia-
tion field, the integral over the total energy density
outside the dielectric resonator does not converge. A
related problem with dielectric resonators is how much
of the energy outside the sample should be included in
the stored energy of the resonator.

Because of these problems we will consider the di-
electric resonator in a slightly different way. Experi-
mentally we know the spherical dielectric sample is not
radiating since it is surrounded by waveguide. We will
consider the problem of a dielectric sphere of radius «
and relative dielectric constant e at the center of a
spherical metal cavity of radius b>a. For estimating
the skin losses, b will be some number the order of the
waveguide dimensions. We will consider the modes
which are little different from the modes which would
exist if the sample were in free space.

The electromagnetic fields can be expressed in terms
of the vector potential in spherical coordinates, which
inside and outside the dielectric sphere will be

73 P N dan] ot
nm —_ —— e-*zw .
sin 6 ¢d0 ’

Ain = jn(klr)eim [é

Aour = [Buju(kor) + Cona(bor)|eims

. im " dan .
. (7] - an — ¢ e—~m»t_
sin 0 de

i. and n, are spherical Bessel functions of the first and
second kind, P, are the associated Legendre functions,®

9 For the properties of spherical Bessel function and associated
Legendre functions, see J. A. Stratton, “Electromagnetic The;ory,”
McGraw-Hill Book Co., Inc., New York, N. Y., 1941, or a similar
work.
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k1= (2m/N)V/€, by =27 /\, and w is the angular frequency.
B, and C, are determined by the boundary condition
that the tangential components of A and its curl must
be continuous at r=ga, and that the tangential com-
ponents of A must vanish at r=»5. A characteristic
equation is obtained which determines the resonant
frequencies of the system.

[#1ajn(kra) |’
Jn(k10)
) [(kzann(kw)]' - ;l—:% [kgdjn(kgd)]l
B fat) — 1, (k2b) (hec)
n,(kaa j—n(k2b) Inlksa

The prime indicates differentiation with respect to
the argument. The damping because of skin losses can
be computed and expressed in terms of a Quxin.*?

= e D (k) (kb
stin—?—f——s‘(é 2 (2

A (ko) (kb) — ju(aa)na(ksb) |2,

where § is the skin depth (2/wuc)'? and ¢ is the con-
ductivity of the walls. We have assumed that the rela-
tive permeability of the cavity and of the dielectric
sphere is one.

The radius of the samples measured at 20 kMc was of
the order of 5X10™* meters. If we assume that
b=15X10"* meters, which is roughly % the smallest
dimension of the waveguide, we find that e=150 and
€= 750 for the first two roots of the characteristic equa-

0\, R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 531; 1950.
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tion for n=1. The characteristic equation is almost in-
dependent of b for values of a, b, and w of this order. If
we assume that the metal cavity is copper (¢~ 5.8 X107
mhos/meter), we find Quin =105 and Quin =5 X 10? for
e=150 and 750, respectively. For larger values of #,
Qskin 1s still larger. Since the loss tangent of the material
being measured was the order of 10~ which corresponds
to an unloaded Q= 103, the skin losses may be neglected.

The ratio of the energy stored inside the dielectric
sphere to the energy stored outside the dielectric sphere
can be calculated. Considering roots of the characteristic
equation such that the electric field decreases outside the
dielectric sphere, it is found that for any reasonably
small value of b the energy stored inside the dielectric
sphere is much greater than the energy stored outside.
For instances for # =1, e= 300, ¢ =5 X 10~* meters, and
a frequency of 20 kMc, we find that & must be about
0.8 meter before the energy stored externally equals
the energy stored inside the dielectric sphere.

If we assume that ¢ =5X107¢ meters and b=15X10~*
meters and # = 1, then the ratio of the energy stored out-
side the dielectric sphere to the energy stored inside is
0.03 for €e=150 and 0.007 for e=750. For larger values
of # and larger values of the dielectric constant, the
ratio of the energies is still smaller.

Other shapes of dielectric resonators such as cubes or
parallelepipeds will behave in a similar manner in re-
gard to skin losses and the relative energy stored inside
and outside the sample; although the details will de-
pend on the specific geometry. Some of the possible uses
of dielectric resonators have been pointed out by
Okaya.t

LA, Okaya, “The rutile microwave resonator,” Proc. IRE,
(Correspondence), vol. 48, p. 1921; November, 1960.




